Two sources of uncertainty in retrieval of ice cloud properties

Qingyuan Han University of Alabama in Huntsville

Presentation at the 28th CERES Science Meeting May 8, 2003 Norfolk, VA

Outline

- Empirical size distributions assumed in algorithms and the associated problem
- Solution: theoretical size distributions
- Crystal habits used in algorithms and the possible effects
- Deriving crystal habits using CERES biaxial mode (RAP) data

Different approaches for ice and water clouds

• For water clouds: theoretical size distributions characterized by two size parameters: r_e and v_e are used (Hansen and Travis

1974).

• For ice clouds: empirical size distributions characterized by one size parameter: r_e or D_e were adopted (Fu 1996, Wyser & Yang 1998).

• The ad hoc choice of empirical size distributions may cause large uncertainties in the retrieved ice cloud properties

Effects of size distribution on Single Scattering Properties

• For the same effective size, different size distributions cause large range of variations in single scattering properties

Inconsistent single scattering properties

		CER	ES (l =3.73	m m)	MOI	DIS (l =3.82	m m)
Cloud Model	v _e	$\mathbf{D}_{\mathbf{e}}$ (m m)	V_{0}	g	r _e (mm)	V_0	g
Cold Cirrus	0.85	23.86	0.7849	0.8057	8.9	0.7924	0.7840
Cirrosstratus	0.52	41.20	0.7047	0.8571	19.3	0.7924	0.7840
Warm Cirrus	0.96	45.30	0.7176	0.8469	26.3	0.7927	0.7777
-40° Cirrus	0.95	67.60	0.6775	0.8731	37.3	0.7376	0.8257
Nov. 1 Cirrus	0.18	75.20	0.6281	0.9121			
Cirrusuncinus	0.15	123.1	0.5875	0.9344	78.5	0.6347	0.9242

• Variations of size distribution shapes lead to non-monotonic behavior of single scattering properties with particle size.

Multiple solution problem

• Inconsistent behavior of single scattering properties may cause problem of multiple solutions and inconsistency.

Single scattering properties with fixed v_e

• For a given pair of r_e and v_e , single scattering properties are independent of size distributions

Retrievals using theoretical and empirical size distributions

• Retrieved $\mathbf{r}_{\rm e}$ using empirical (left panel) and theoretical (right panel) size distributions

Various crystal habits assumed in satellite retrievals

 MODIS
 Image: Control of the contro

POLDER: Modified VVP (Doutriaux-Boucher et al. 2000)

• In all algorithms, one habit assumption is used for all iceclouds

Effects on effective particle size

• For the same maximum dimension of crystals, different shapes may lead to uncertainties of effective size by a factor of two.

Effect on effective particle size

• Effective particle sizes are not consistent for the same size distributions used in CERES and MODIS algorithms

Effect of particle size on emissivity and albedo

Fu and Liou 1993

• Particle size effect is significant for both short and long wave radiation

Parameterization for Hexagonal Columns

$$\beta = \text{IWC}(a_0 + a_1/D_{ge}), \qquad (3.9a)$$

$$1 - \tilde{\omega} = b_0 + b_1 D_{ge} + b_2 D_{ge}^2 + b_3 D_{ge}^3, \qquad (3.9b)$$

$$g = c_0 + c_1 D_{ge} + c_2 D_{ge}^2 + c_3 D_{ge}^3, \qquad (3.9c)$$

$$f_{\delta} - d_0 + d_1 D_{ge} + d_2 D_{ge}^2 + d_3 D_{ge}^3, \qquad (3.9d)$$

$$D/L = \begin{cases} 1.0 & 0 < L \le 30 \ \mu\text{m} \\ 0.8 & 30 < L \le 80 \ \mu\text{m} \\ 0.5 & 80 < L \le 200 \ \mu\text{m} \\ 0.34 & 200 < L \le 500 \ \mu\text{m} \\ 0.22 & L > 500 \ \mu\text{m}, \end{cases}$$

$$r_e = \frac{3(3)^{1/2}}{8} D_{ge}. (3.12)$$

• Fu (1996) developed parameterization scheme for hexagonal columns (CERES algorithm)

Parameterization for mixed habits

50% bullet rosettes, 25% plates and 25% hollow columns

L<70 μm

30% aggregates, 30% bullet rosettes, 20% plates and 20% hollow columns $L>70 \mu m$

$$\beta = a_o/D_e, \ a_o = 3.276 \text{ m}^2 \text{ g}^{-2} \text{ } \mu\text{m}, (17)$$

$$1 - \omega = b_o + b_1 D_e + b_2 D_e^2, \tag{18}$$

$$D_{ge} = \frac{2\sqrt{3}}{3} \frac{C}{\rho_{ice} A}. \tag{20}$$

$$g = c_o + c_1 D_e + c_2 D_e^2,$$
 (19) $D_{ge} = 0.77 D_e.$ (21)

Table 2. Coefficients for the Parameterizations for ω and g Using Equations (18) and (19)^a

Band	b_{o}	b_1	b_2	c_{o}	c_1	c_2
6	1.37e-07 ^b	7.06e-08	5.64e-12	7.56e-01	1.08e-03	-4.12e-06
7	1.37e-07	7.06e-08	5.64e-12	7.56e-01	1.08e - 03	-4.12e-06
8	-1.52e-07	7.38e-08	-3.48e-11	7.46e-01	1.41e-03	-5.74e-06
9	1.41e-06	5.72e-06	-1.22e-09	7.25e-01	1.85e-03	-7.73e-06
10	1.12e-03	5.65e-04	-8.96e - 07	7.17e-01	2.28e-03	-8.86e-06
11	4.83e-02	2.74e - 03	-9.02e-06	7.71e-01	2.45e - 03	-1.00e-05
	The state of the s					

^aThe unit of D_e in equations (18) and (19) is give in μm.

• Chou et al. (2002) developed parameterization for mixed crystal habits (MODIS algorithm)

^bRead 1.37e-07, for example, as 1.37×10^{-7} .

Effects on net downward flux density

 \bullet Even for the same D_e , different assumptions of crystal shapes lead to large gaps in calculated net downward flux density – De and habits are both needed

Crystal habit effect on cloud schemes

• Ice cloud parameterization schemes become habit specific

Effect of Crystal Shape on SSRB

$$D = \begin{cases} 0.142L^{0.7556} & \text{when } L \leq 30 \ \mu\text{m}; \\ 0.064L^{0.53} & \text{when } L > 30 \ \mu\text{m}. \end{cases}$$

$$\begin{array}{c} 500 \\ 450 \\ 400 \\ 350 \\ 300 \\ 250 \\ 250 \\ 200 \\ 100 \\ \end{array}$$

0.30 0.35 0.40 0.45 0.50

TOA Albedo R...

• Different aspect ratios and surface roughness lead to significant changes of net flux density at the TOA and at surface.

0.09 0.1

Zhang et al. (2002)

Flux (Wm³)

100 -

0.02 0.03 0.04 0.05 0.06

IWC (gm³)

Effects on single scattering properties

• Single scattering properties vary due to changes in aspect ratios

Crystal habits vary dramatically from case to case

Table 3. Summary of Case Study Results

Date,	Time,		Cl	Class		F	Reflectanc	e Level, 9	%
dd mm yy	UTC	A	В	C	D	30-45	45-60	60-75	75-90
10 99	1645 ^a	o						x	x
10 99	1700			0				x	
03 00	1630			0					x
	1700		0	0				x	x
	1730		0	0				x	x
	1730	0	0				x		
3 00	1600 ^a			0	0			X	X
	1630 ^a			0				X	X
	1700 ^a		0					x	
	1730 ^a		0	O				x	
00	1600			0	0		X	X	
	1630		0	0			X	X	
	1700		0	0			x	X	
	1730	0					x	X	
00	1600		0	0		X			
	1700	0	0			X			
	1730	0	0			X			
00	1600			0	0		x	X	x
	1630		0	0				X	X
	1630	0	0				X		
	1700	0	0				x	X	x
	1730	0	0				x	X	x
8 00	1622	0	0	0					X
	1652	0	0	0					X
00	1622	0	0	0					x
	1652ª	0	0	0					X
8 00	2050		0	0			x	X	
8 00	1652		0	0					X
9 00	2055 ^a		0	0			X	X	

^aCases presented in figures.

• 28 pairs of pixels by GOES, AVHRR, and VIRS data show that CERES and MODIS algorithms can represent the crystal habits in most cases

Effects on zonal mean SW and LW radiation

• By changing from hexagon columns to bullet rosettes, net radiation budget at the TOA varies by more than 10 W m⁻², with different zonal mean changes

Retrieval method for crystal habits

- All based on angular distributions of reflected intensity
- Problems:
 - lack of observations at ideal angles
 - critically based on plane-parallel assumption which is not verified during the observation
- Non-restricted biaxial data from CERES overcomes these problems

Current methods are based on information from multi-view

Chepfer et al. 1998

- Similarity for various shapes in most scattering angles (60° and ~180°)
- Plane-parallel assumption is critical in these methods

Discriminating shapes by enhanced backscattering

• Similar results were obtained by others

Discriminating shapes by enhanced backscattering

• Behaviors of water droplet and different ice crystals (SZA=40°)

The ideal pair of angles are scarce in satellite data

• From ATSR, Baran et al. (1998) found a case with $Q\!=\!157^{\rm o}$ and $65^{\rm o}$ using ATSR data

Multisatellite Approach

Data from different satellites are used to obtain ideal viewing angle pairs.

Effect of cirrus morphology

• Cirrus morphology plays a dominant role in controlling angular distribution of reflected solar energy

Examples of Cirrus Morphology

• Typical cirrus morphology observed by radar echoes

Indication of departure from plane-parallel: standard deviation of cloud top temperature

• Comparing with water clouds, cirrus morphology is a much more serious problem.

Examples of Polycrystal

• Crystal habits can be derived for cirrus scene with small temperature variations.

Examples of Hexagon

• Crystal habits can be derived for cirrus scene with small temperature variations.

Summary

- Theoretical size distribution can improve the consistency in the retrieved results
- Lack of knowledge in crystal habits leads to significant uncertainties in radiative properties of ice clouds
- Previous efforts in determining crystal habits may be influenced by cirrus morphology
- Unrestricted biaxial data of CERES contain are ideal for deriving information of crystal habits